Fritjof Capra. La nouvelle physique.

3. Fritjof Capra. Au-delà du langage.


Selon les mystiques orientales, l’expérience immédiate de la réalité est un événement capital qui ébranle tous les fondements de notre conception du monde. D. T. Suzuki l’a nommé « l’événement le plus sensationnel qui puisse jamais advenir dans le domaine de la conscience humaine, bouleversant toute espèce d’expérience normale » et il a illustré le caractère choquant de cette expérience avec les mots du maître Zen la décrivant comme le « fond percé d’un seau ».

Au début de ce siècle, les physiciens éprouvèrent un sentiment très proche lorsque les bases de leur conception du monde furent ébranlées par l’expérience nouvelle de la réalité atomique, et ils décrivirent cette expérience en termes souvent très proches de ceux utilisés par le maître Zen cité par Suzuki. Ainsi Heisenberg écrit-il : « La réaction violente au développement récent de la physique moderne peut être seulement comprise lorsqu’on réalise qu’alors les bases de la physique ont commencé à bouger, et que ce mouvement a créé le sentiment que la science perdait ses fondements ».

Einstein éprouva le même choc lorsqu’il entra pour la première fois en contact avec la réalité nouvelle de la physique atomique. Il écrivit dans son autobiographie : « Tous mes efforts pour ajuster le fondement théorique de la physique à ce nouveau type de connaissance ont totalement échoué. C’était comme si le sol s’était dérobé sous mes pieds, sans qu’aucun fondement solide soit visible quelque part, sur lequel on aurait pu construire ». 

Les découvertes de la physique moderne ont profondément modifié des notions telles que celles d’espace, de temps, de matière, d’objet, de cause et d’effet. Dès lors que ces notions fondent notre manière d’expérimenter le monde, il n’est pas surprenant que les physiciens obligés de les modifier aient ressenti quelque émotion. De ces changements a émergé une nouvelle vision du monde, radicalement différente, encore en voie de formation dans les recherches scientifiques en cours.

Il semble donc que les mystiques orientaux et les physiciens occidentaux soient passés par les mêmes expériences révolutionnaires, qui les ont conduits à des manières totalement nouvelles de voir le monde. Dans les passages suivants, le physicien européen Niels Bohr et le mystique indien Sri Aurobindo expriment tous deux la profondeur et la radicalité de cette expérience : « Le vaste élargissement de notre expérience durant ces dernières années a mis en lumière les insuffisances de notre naïve conception mécaniste et, en conséquence, a ébranlé le fondement sur lequel se basait l’interprétation habituelle de l’observation » (Niels Bohr).

« Toutes choses, en fait, commencent à changer de nature ou d’apparence ; notre expérience globale du monde a radicalement évolué. Il s’ouvre un nouveau champ, vaste et profond, d’expérimentations, de visions, de connaissances, de contacts avec les choses ».

Sri Aurobindo.


LA PHYSIQUE CLASSIQUE.

La vision du monde révolutionnée par les découvertes de la physique moderne était fondée sur le modèle mécaniste de l’univers de Newton. Ce modèle constituait le cadre solide de la physique classique. C’était bien entendu un fondement formidable, comme un rocher puissant, soutenant toute la science et procurant une base solide à la philosophie de la nature pendant près de trois siècles.

Le théâtre de l’univers newtonien, dans lequel se situaient tous les phénomènes physiques, était l’espace à trois dimensions de la géométrie euclidienne classique. C’était un espace absolu, toujours en repos et inchangeable. Selon les termes mêmes de Newton, « un espace absolu par sa nature propre, qui, sans tenir compte des choses extérieures, demeure toujours semblable et immuable ». Tous les changements dans le monde physique étaient décrits par rapport à une dimension séparée, appelée temps, qui elle aussi était absolue, sans rapport avec le monde matériel, et coulait doucement du passé à travers le présent vers le futur. « Temps absolu, vrai et mathématique, disait Newton, qui de lui-même et par sa propre nature se déroule uniformément, indépendamment des choses extérieures ».

Les éléments du monde newtonien se mouvant dans cet espace et ce temps absolus étaient des particules matérielles. Elles étaient qualifiées de « masses ponctuelles », et Newton les voyait comme des petits objets solides et indestructibles, dont toute matière était faite. Ce modèle était presque semblable à celui des atomistes grecs. Les deux étaient fondés sur la distinction entre le plein et le vide, la matière et l’espace et, dans les deux modèles, les particules demeuraient toujours identiques dans leur masse et leur forme. La matière était par conséquent toujours conservée et essentiellement passive. La différence importante entre l’atomisme de Démocrite et celui de Newton est que ce dernier comprend une description précise de la force agissant entre les particules matérielles. Cette force est très simple, dépendant seulement des masses et de la distance entre les particules, c’est la force de gravité, et elle était considérée par Newton comme strictement liée aux corps sur lesquels elle s’exerçait, agissant instantanément à distance. Bien que ce fût une hypothèse singulière, elle ne fut pas examinée plus avant. Les particules et les forces entre elles, étaient conçues comme ayant été créées par Dieu et ainsi n’étaient pas sujettes à des analyses plus approfondies. Dans son Optique, Newton nous donne une image claire de la manière dont il imaginait la création divine du monde matériel : « Il me semble probable que Dieu, au commencement, a formé la matière à l’aide de particules solides, massives, dures, impénétrables, mobiles, dotées de formes et de tailles et d’autres propriétés, et dans un rapport tel à l’espace qu’elles réalisent le mieux le dessein en vue duquel il les a formées, et que ces particules primaires, étant solides, sont incomparablement plus dures que n’importe quel corps poreux composé par elles ; si dures encore qu’elles ne peuvent jamais être usées ou cassées ; aucun pouvoir ordinaire n’étant capable de diviser ce que Dieu lui-même a fait unique dans la création initiale ». 

Dans la mécanique newtonienne, tous les phénomènes physiques sont réduits au mouvement des points matériels dans l’espace, causé par leur attraction mutuelle, c’est-à-dire par la force de gravitation. Afin de mettre sous une forme mathématique précise les effets de cette force sur un point d’une masse, Newton dut inventer des concepts totalement nouveaux et une technique mathématique, celle du calcul différentiel. Ce fut un exploit intellectuel immense, salué par Einstein comme « peut-être le plus grand progrès dans la pensée qu’un individu singulier eut jamais le privilège de réaliser ».

Les règles du mouvement de Newton sont les bases de la mécanique classique. Elles étaient considérées comme des lois fixes, entrant en ligne de compte dans tous les changements survenant dans le monde physique. Selon Newton, Dieu a créé, au commencement, les particules matérielles avec les forces entre elles et les lois fondamentales du mouvement. En ce sens, le monde entier fut mis en mouvement et a continué depuis toujours à tourner, semblable à une machine gouvernée par des lois immuables.

La vision mécaniste de la nature est donc étroitement liée à un rigoureux déterminisme. La machine cosmique géante était perçue comme étant complètement causale et déterminée. Tout ce qui survenait avait une cause définie et engendrait un effet déterminé, et l’on pouvait — en principe — prédire l’avenir de chaque partie du système, avec une certitude absolue, pour autant que l’on connaisse, en détail, sa situation. Cette croyance trouve son expression la plus claire dans les mots célèbres du mathématicien français Pierre- Simon Laplace : « Un intellect qui à un instant donné connaîtrait toutes les forces en action dans la nature et la position de chaque chose dont le monde est fait — en supposant que ledit intellect soit suffisamment vaste pour soumettre ces faits à l’analyse — comprendrait dans la même formule les mouvements des plus grands corps de l’univers et ceux des atomes les plus infimes ; rien ne serait incertain pour lui, et l’avenir, comme le passé, serait présent à ses yeux ».

La dualité fondamentale du sujet et du monde introduite par Descartes est la base philosophique de ce rigoureux déterminisme. Par suite de cette division, on croyait que le monde pouvait être décrit objectivement, c’est-à-dire sans jamais mentionner l’observation humaine, et une telle description objective de la nature devint l’idéal de la science.

Le XVIIIe et le XIXe siècle témoignent du succès énorme de la mécanique de Newton. Newton lui-même appliqua sa théorie au mouvement des planètes et fut en mesure d’expliquer les traits fondamentaux du système solaire. Son modèle planétaire était grandement simplifié toutefois, négligeant, par exemple, l’influence gravitationnelle des planètes les unes sur les autres, et ainsi il découvrit qu’il existait certaines irrégularités dont il ne pouvait donner l’explication. Il résolut ce problème en postulant l’omniprésence de Dieu dans l’univers pour corriger ces irrégularités.

Le grand mathématicien Laplace s’assigna la tâche ambitieuse d’épurer et de parfaire les calculs de Newton dans un livre qui « offrirait une solution complète du grand problème mécanique posé par le système solaire et amènerait la théorie à coïncider si étroitement avec les observations que les équations empiriques n’auraient plus cours dans les tables astronomiques ». Une grande étude en cinq volumes en résuit appelée la Mécanique céleste, dans laquelle Laplace réussit à expliquer les mouvements des planètes, de la Lune et des comètes jusqu’aux plus infimes détails, aussi bien que le flux des marées et autres phénomènes ayant trait à la gravitation. Il démontra que les lois du mouvement de Newton prouvaient la stabilité du système solaire et traitaient l’univers comme une machine parfaitement autorégulatrice. Lorsque Laplace présenta la première édition de son œuvre à Napoléon, raconte l’histoire, l’Empereur remarqua : « Monsieur Laplace, on m’a dit que vous aviez écrit ce gros livre sur le système de l’univers sans jamais mentionner son Créateur » ce à quoi Laplace répliqua brusquement : « Je n’avais nul besoin de cette hypothèse ».

Encouragés par le brillant succès de la mécanique de Newton en astronomie, les physiciens retendirent au mouvement continu des fluides et aux vibrations des corps élastiques, et là encore elle triompha. Finalement, même la théorie thermique aurait pu être réduite à la mécanique lorsqu’on réalisa que la chaleur était l’énergie produite par un mouvement « ondulatoire » complexe des molécules. Quand la température de l’eau monte, le mouvement des molécules d’eau augmente jusqu’à ce qu’il excède les forces les liant les unes aux autres et provoque leur dispersion. Ainsi l’eau se transforme- t-elle en vapeur. D’autre part, lorsque le mouvement thermique est ralenti par le refroidissement de l’eau, les molécules se fixent dans une forme nouvelle, la glace. De façon similaire, plusieurs autres phénomènes thermiques peuvent très bien être compris d’un point de vue strictement mécanique.

L’énorme succès du modèle mécaniste fit croire aux physiciens du début du XIXe siècle que l’univers était véritablement un gigantesque système mécanique régi par les lois du mouvement de Newton. Ces lois étaient considérées comme des lois fondamentales de la nature et la mécanique de Newton comme la théorie décisive des phénomènes naturels. Cependant, moins d’un siècle plus tard, une nouvelle réalité physique fut découverte, faisant apparaître les limites du modèle newtonien et montrant qu’aucun de ses traits ne possédait de validité absolue.

Cette réalisation n’advint pas abruptement, mais fut préparée par des développements qui avaient déjà commencé au XIX siècle et ouvert la voie aux révolutions scientifiques de notre époque. Le premier de ces développements fut la découverte et l’étude des phénomènes électriques et magnétiques qui n’auraient pu être décrits correctement par le modèle mécaniste, et qui engageaient un nouveau type de force. Ce pas décisif fut fait par Michael Faraday et Clerk Maxwell, le premier étant l’un des plus grands expérimentateurs de l’histoire des sciences, le second, un brillant théoricien. Lorsque Faraday produisit un courant électrique dans une bobine de cuivre en déplaçant un aimant près d’elle, puis transforma le travail mécanique de déplacement de l’aimant en énergie électrique, il amena la science et la technique à un tournant. Son expérimentation fondamentale donna naissance, d’une part, à la vaste technologie de l’énergie électrique, de l’autre, à la constitution de la base de ses théories spéculatives et de celles de Maxwell, qui, par la suite, aboutirent à une théorie complète de l’électromagnétisme. Faraday et Maxwell n’étudièrent pas uniquement les effets des forces électriques et magnétiques, mais firent des forces elles-mêmes l’objet principal de leurs recherches. Ils remplacèrent le concept de force par celui de champ de forces, et, ce faisant, ils furent les premiers à aller au-delà de la physique newtonienne.

Au lieu d’expliquer l’interaction entre une charge positive et une charge négative en disant simplement que les deux charges s’attirent mutuellement comme deux masses dans la mécanique de Newton, Faraday et Maxwell trouvèrent plus juste de dire que chaque charge produit une « perturbation », ou une « condition », dans l’espace environnant, telle que l’autre charge, lorsqu’elle est présente, éprouve une force. Cette condition de l’espace qui a la potentialité de produire une force est appelée un champ. Il est créé par une simple charge et existe, qu’on y place une autre charge ou non.

Cela modifia profondément la conception humaine de la réalité physique. Dans la conception newtonienne, les forces étaient strictement liées aux corps sur lesquels elles agissaient. Maintenant le concept de force était remplacé par le concept beaucoup plus subtil de champ ayant sa propre réalité et pouvant être étudié sans référence aucune aux corps matériels. L’apogée de cette théorie, appelée électrodynamique, fut la compréhension que la lumière n’est rien d’autre qu’un champ électromagnétique alternatif se propageant dans l’espace sous forme d’ondes. Aujourd’hui, nous savons que les ondes radio, les ondes lumineuses ou les rayons X sont toutes des ondes électromagnétiques, électricité oscillatoire et champs magnétiques différant seulement par la fréquence de leurs oscillations, et que la lumière visible est seulement une petite fraction du spectre électromagnétique.

Malgré ces changements de grande portée, la mécanique newtonienne a tout d’abord maintenu sa position comme base de toute la physique. Maxwell lui-même tenta de traduire ses résultats en termes mécaniques, interprétant les champs comme des états de tension mécanique dans une très légère substance remplissant l’espace, appelée éther, et les ondes électromagnétiques comme ondes élastiques de cet éther. Cela allait de soi, les ondes étant ordinairement appréhendées comme vibrations de quelque chose : les ondes aquatiques comme vibrations de l’eau, les ondes sonores comme vibrations de l’air. Maxwell eut cependant simultanément recours à plusieurs interprétations mécaniques de sa théorie et n’en prit apparemment aucune réellement au sérieux. Il dut réaliser intuitivement, même s’il ne le dit pas explicitement, que les entités fondamentales dans la théorie étaient les champs et non les modèles mécaniques. Ce fut Einstein qui reconnut clairement ce fait cinquante ans plus tard lorsqu’il affirma l’inexistence de l’éther et que les champs électromagnétiques étaient des entités physiques par eux-mêmes, qui pouvaient se propager à travers un espace vide, et dont on ne pouvait donner une explication mécanique.

Au début du XXe siècle, les physiciens se trouvèrent donc en possession de deux théories efficientes s’appliquant à des phénomènes différents : la mécanique de Newton et l’élec- trodynamique de Maxwell. Ainsi le modèle newtonien avait-il cessé d’être la base de toute la physique.


LA PHYSIQUE MODERNE.

Les trois premières décennies de notre siècle changèrent radicalement toute la situation de la physique. Deux développements autonomes — celui de la théorie de la relativité et celui de la physique atomique — invalidèrent tous les concepts principaux de la vision newtonienne du monde : les notions d’espace et de temps absolus, de particules élémentaires solides, de phénomènes physiques de nature strictement causale, ainsi que l’idéal d’une description objective de la nature. Aucun de ces concepts ne pouvait être étendu aux nouveaux domaines où les physiciens menaient désormais leurs investigations.

Au début de la physique moderne il y a l’extraordinaire exploit d’un homme : Albert Einstein. Dans deux articles, publiés en 1905, Einstein ouvrit la voie à deux courants de pensée révolutionnaires. L’un fut sa théorie de la relativité, l’autre une nouvelle conception du rayonnement électromagnétique appelée à devenir caractéristique de la théorie quantique, théorie des phénomènes atomiques. La théorie quantique fut achevée vingt ans plus tard par toute une équipe de physiciens, mais la théorie de la relativité fut édifiée dans sa forme définitive presque entièrement par Einstein lui-même. Ses écrits scientifiques se dressent au début du XXe siècle comme d’imposants monuments intellectuels — les pyra- mides de la civilisation moderne.

Einstein croyait fermement en l’harmonie inhérente à la nature et sa préoccupation la plus profonde, tout au long de sa vie scientifique, fut de trouver un fondement unitaire de la physique. Il commença à se diriger vers ce but en fournissant une structure commune à l’électrodynamique et à la mécanique, les deux théories distinctes de la physique classique. Cette structure est connue sous le nom de théorie de la relativité. Elle unifia et compléta la structure de la physique classique, mais en même temps elle modifia radicalement les notions traditionnelles d’espace et de temps, sapant l’un des fondements de la vision newtonienne du monde.

Selon la théorie de la relativité, l’espace n’est pas tridimensionnel et le temps n’est pas une entité séparée. Tous deux sont intimement liés et forment un continuum à quatre dimensions, l’Espace-Temps. Dans la théorie de la relativité, par conséquent, nous ne pouvons jamais parler de l’espace sans parler du temps et vice versa. En outre, il n’y a pas de fuite universelle du temps comme dans la théorie de Newton. Des observateurs différents placeront différemment des événements dans le temps s’ils se meuvent à des vitesses différentes relativement aux phénomènes observés. Dans un tel cas, deux événements vus comme se produisant simultanément par un observateur peuvent survenir dans des séquences temporelles différentes pour d’autres observateurs. Toutes les mesures mettant en jeu l’espace et le temps perdent donc leur signification absolue. Dans la théorie de la relativité, la notion newtonienne d’un espace absolu comme scène d’action des phénomènes physiques est abandonnée ainsi que celle d’un temps absolu. Espace et temps deviennent simplement des éléments du langage qu’utilise un observateur particulier pour décrire les phénomènes.

Les concepts d’espace et de temps sont tellement essentiels à la description des phénomènes naturels que leur modification entraîne une transformation de l’ensemble du cadre utilisé pour décrire la matière. La plus importante conséquence de cette modification consiste en la compréhension que la masse n’est rien d’autre qu’une forme d’énergie. Même un corps au repos contient de l’énergie emmagasinée dans sa masse.

Cette constante c, la vitesse de la lumière, est d’une importance capitale pour la théorie de la relativité. Chaque fois que nous décrivons des phénomènes physiques engageant des vitesses approchant celle de la lumière, notre description doit tenir compte de la théorie de la relativité. Cela s’applique en particulier aux phénomènes électromagnétiques, dont la lumière n’est qu’un exemple, qui ont conduit Einstein à la formulation de sa théorie.

En 1915 Einstein proposa sa théorie de la relativité générale, dans laquelle le cadre de la théorie restreinte est élargi de façon à inclure la gravité, c’est-à-dire l’attraction réciproque de toutes les masses. Alors que la théorie restreinte a été confirmée par d’innombrables expérimentations, la théorie générale n’a pas encore été prouvée de façon concluante. Quoi qu’il en soit, c’est jusqu’à maintenant la théorie reconnue comme la plus pertinente en ce qui concerne la gravité, et elle est largement utilisée en astrophysique et en cosmologie pour la description de l’univers dans son ensemble.

La force de gravité, selon la théorie d’Einstein, a comme effet de « courber » l’espace et le temps. Cela signifie que la géométrie euclidienne courante n’est plus valable dans un tel espace courbe, de même que la géométrie bi-dimensionnelle d’un plan ne peut être appliquée à la surface d’une sphère. Sur un plan horizontal, nous pouvons dessiner, par exemple, un carré en rapportant un mètre à une ligne droite, en faisant un angle droit et en rapportant un autre mètre, puis en faisant un autre angle droit et en rapportant un autre mètre, et enfin en faisant un troisième angle droit et en rapportant de nouveau un mètre, après quoi nous sommes ramenés au point de départ et le carré est complet. Sur un sphère, cependant, ce procédé est inutilisable car les règles de la géométrie euclidienne ne valent pas pour les surfaces courbes. De la même façon, nous pouvons définir un espace courbe tridimensionnel comme étant celui dans lequel la géométrie euclidienne n’est plus valide. La théorie d’Einstein, quant à elle, spécifie que l’espace à trois dimensions est réellement courbe et que la courbure est due au champ de gravitation des corps massifs.

Partout où il y a un objet matériel, par exemple une étoile ou une planète, l’espace autour de lui est courbe et le degré de courbure dépend de sa masse. Et, comme l’espace ne peut jamais être séparé du temps dans la théorie de la relativité, le temps est également affecté par la présence de la matière, se propageant à différentes vitesses dans les diverses régions de l’univers. La théorie générale de la relativité d’Einstein abolit ainsi totalement les notions d’espace et de temps absolu. Non seulement toutes les mesures concernant l’espace et le temps deviennent relatives, mais aussi la structure globale de l’espace-temps dépend de la répartition de la matière dans l’univers et la notion d’« espace vide » perd son sens.

La conception mécaniste du monde dans la physique classique était fondée sur la notion de corps solides en mouvement dans l’espace vide. Cette notion est encore valable dans la région nommée « zone de moyennes dimensions », domaine de notre expérience quotidienne, où la physique classique demeure valide. Les notions d’espace vide et de corps matériels solides sont profondément ancrées dans nos habitudes de pensée, aussi nous est-il extrêmement difficile d’imaginer une réalité physique où elles ne s’appliquent pas. C’est pourtant précisément ce que la physique moderne nous oblige à faire quand nous allons au-delà des moyennes dimensions.

L’espace vide a perdu sa signification en astrophysique et en cosmologie, sciences de l’univers dans ses grandes dimensions, et la notion d’objets solides a été anéantie par la physique atomique, science de l’infiniment petit.

Au tournant du siècle, plusieurs phénomènes ayant trait à la structure des atomes et inexplicables en termes de physique classique furent découverts. Les premiers indices de la structure des atomes vinrent de la découverte des rayons X, qui trouva rapidement son application, aujourd’hui très répandue en médecine. Les rayons X, toutefois, ne sont pas les seules radiations émises par les atomes. Peu après leur découverte, d’autres sortes de radiations furent découvertes, émises par les atomes des substances nommées radioactives. Les phénomènes de radioactivité donnèrent une preuve définitive de la nature complexe des atomes, montrant que non seulement les atomes des substances radioactives émettent divers types de radiations, mais qu’ils se transforment aussi eux-mêmes en atomes de substances complètement différentes.

En dehors du fait d’être des objets d’étude intense, ces phénomènes furent aussi utilisés de la façon la plus ingénieuse, comme nouveaux outils pour explorer la matière plus profondément qu’auparavant. Ainsi Max von Laue utilisa-t-il les rayons X pour étudier l’agencement des atomes en cristaux, et Ernest Rutherford réalisa-t-il que les particules alpha, émanant des substances radioactives, étaient des projectiles ultra-rapides de taille subatomique pouvant être utilisés en vue d’explorer l’intérieur des atomes. On pouvait en bombarder les atomes et, selon la façon dont elles étaient déviées, on pouvait tirer des conclusions sur la structure des atomes.

Lorsque Rutherford bombarda les atomes avec ces particules alpha, il obtint des résultats spectaculaires et totalement imprévus. Loin d’être les petits corps durs et solides qu’ils étaient censés être depuis l’Antiquité, les atomes se révélèrent être de vastes régions d’espace dans lesquelles d’extrêmement petites particules, les électrons, tournaient autour du noyau, liées à lui par des forces électriques. Il n’est pas facile de se faire une idée de l’ordre de grandeur des atomes, tant il est éloigné de notre système de mesure macroscopique. Le diamètre d’un atome est à peu près d’une centaine de millionième de centimètre. Afin de visualiser cette taille minuscule, imaginez une orange gonflée à la dimension de la Terre. Les atomes de l’orange auraient alors la taille de cerises. Des myriades de cerises étroitement serrées en un globe de la taille de la Terre, voilà l’image grossie des atomes dans une orange.

Un atome, par conséquent, est extrêmement petit comparé aux objets macroscopiques, mais il est énorme comparé à son noyau central. Dans notre image des atomes de la taille de cerises, le noyau d’un atome serait si petit que nous ne pourrions l’apercevoir. Si nous gonflons l’atome jusqu’à la taille d’un ballon, ou même d’une pièce, le noyau serait encore trop petit pour être perçu à l’œil nu. Pour voir le noyau, nous devrions gonfler l’atome jusqu’aux dimensions de la plus grande coupole du monde, le dôme de la cathédrale Saint-Pierre à Rome. Dans un atome de cette dimension, le noyau aurait la taille d’un grain de sel ! Un grain de sel au milieu du dôme de Saint-Pierre et des grains de poussière tourbillonnant à leur tour dans le vaste espace du dôme. C’est ainsi que nous pouvons nous représenter le noyau et les électrons d’un atome.

Peu après l’émergence de ce monde « planétaire » de l’atome, on découvrit que le nombre des électrons dans les atomes d’un élément détermine les propriétés chimiques de cet élément, et aujourd’hui nous savons que la table périodique complète des éléments peut être construite en ajoutant successivement des protons et des neutrons au noyau de l’atome le plus léger — l’hydrogène —, et le nombre correspondant d’électrons à sa surface atomique. Les interactions des atomes donnent naissance aux divers processus chimiques, de telle sorte qu’actuellement toute la chimie peut, en principe, être comprise sur les bases des lois de la physique atomique.

Ces lois, toutefois, ne furent pas aisées à découvrir. Elles furent découvertes dans les années 1920, par un groupe international de physiciens parmi lesquels le Danois Niels Bohr, le Français Louis de Broglie, les Autrichiens Erwin Schrôdinger et Wolfgang Pauli, l’Allemand Werner Heisenberg et l’Anglais Paul Dirac. Ces hommes joignirent leurs efforts à travers les frontières et entrèrent dans l’une des périodes les plus exaltantes de la science moderne, qui mit l’homme, pour la première fois, au contact de la réalité étrange et inattendue du monde subatomique. Chaque fois que les physiciens questionnèrent la nature dans une expérimentation atomique, celle-ci répondit par un paradoxe, et plus ils essayaient de clarifier la situation, plus aigus devenaient les paradoxes. Il leur fallut un long moment pour accepter lefait que ces paradoxes appartiennent à la structure intrinsèque de la physique atomique et réaliser qu’ils surgissent chaque fois qu’on essaie de décrire les phénomènes atomiques dans les termes de la physique traditionnelle. Une fois cela admis, les physiciens commencèrent à savoir poser des questions pertinentes et à éviter les contradictions. Selon les termes de Heisenberg, « ils entrèrent dans l’esprit de la théorie quantique » et finalement trouvèrent la formulation mathématique précise et cohérente de cette théorie.

Les concepts de la théorie quantique ne furent pas aisés à admettre, même après que leur formulation mathématique eut été parachevée. Leurs effets ébranlèrent vraiment l’imagination des physiciens. Les expérimentations de Rutherford montrent que les atomes, au lieu d’être durs et indestructibles, se composent de vastes étendues d’espace dans lesquelles des particules extrêmement petites se meuvent, puis la théorie quantique fit apparaître clairement que même ces particules n’ont rien à voir avec les objets solides de la physique classique. Les unités subatomiques de la matière sont des unités très abstraites qui ont un double aspect. Selon la manière dont nous les observons, elles apparaissent tantôt comme des particules et tantôt comme des ondes ; or cette double nature apparaît également dans la lumière, qui peut prendre la forme d’ondes électromagnétiques ou de particules.

Cette propriété de la matière et de la lumière est très étrange. Il paraît impossible d’accepter le fait que quelque chose soit à la fois une particule, c’est-à-dire une entité contenue dans un très petit volume, et une onde, dispersée sur une vaste région de l’espace. Cette contradiction donna naissance à la plupart des paradoxes à la manière des koan, qui conduisirent finalement à la formulation de la théorie quantique. Tout cela commença lorsque Max Planck découvrit que l’énergie du rayonnement thermique n’est pas émise continûment, mais apparaît sous forme de « paquets » d’énergie. Einstein appela « quanta » ces paquets d’énergie et les reconnut comme un aspect fondamental de la nature. Il fut suffisamment audacieux pour postuler que la lumière et toutes les autres formes de rayonnement électromagnétique peuvent se manifester non seulement comme ondes électromagnétiques mais aussi sous forme quantique. Les quanta de lumière, qui donnèrent son nom à la théorie des quanta, ont depuis été reconnus comme des particules et sont maintenant nommés photons. Ce sont des particules d’une espèce spéciale, de masse nulle, se propageant toujours à la vitesse de la lumière.

L’apparente contradiction entre l’image de la particule et celle de l’onde fut résolue d’une manière totalement inattendue qui remit en question les fondements véritables de la conception mécaniste du monde — la notion de la réalité de la matière. Au niveau subatomique, la matière n’existe pas avec certitude à des places définies, mais manifeste plutôt une « tendance à exister », et les événements atomiques ne surviennent pas avec certitude, mais manifestent plutôt des « tendances à survenir ». Dans la formulation de la théorie quantique, ces tendances sont exprimées comme des probabilités et sont associées aux quantités mathématiques qui prennent la forme d’ondes. C’est pourquoi les particules peuvent être simultanément des ondes. Il n’y a pas réellement d’ondes tridimensionnelles comme les sons ou les ondes aquatiques. Ce sont des ondes « probables », des quantités mathématiques abstraites, avec les propriétés caractéristiques des ondes, qui se rapportent aux probabilités de trouver les particules à des points précis dans l’espace et le temps. Toutes les lois de la physique atomique sont exprimées dans les limites de ces probabilités. Nous ne pouvons jamais prédire un cas atomique avec certitude, nous pouvons seulement dire comment il peut probablement advenir.

La théorie quantique a ainsi démantelé les notions classiques d’objets solides et de lois de la nature strictement déterministes. Au niveau subatomique, les objets matériels solides de la physique classique se dissolvent en modèles de probabilités semblables à ceux des ondes, et ces modèles, finalement, ne représentent pas les probabilités des phénomènes, mais plutôt des possibilités d’interconnexion. Une analyse attentive du processus d’observation a montré que, en physique atomique, les particules subatomiques n’ont pas de signification comme entités isolées, mais doivent être comprises comme des communications réciproques entre la préparation d’une expérimentation et les mesures ultérieures. La théorie quantique révèle ainsi l’unicité de l’univers. Elle montre que nous ne pouvons décomposer le monde en ses plus petites unités existantes. Lorsque nous explorons la matière, la nature ne nous montre aucune « première pierre » mais apparaît plutôt comme un réseau serré de relations complexes entre les diverses parties d’un tout. Ces relations impliquent toujours l’observateur d’une façon essentielle. L’observateur humain constitue le dernier maillon dans la chaîne des processus d’observation et les propriétés de n’importe quel objet atomique ne peuvent être comprises qu’en termes d’interaction de l’objet et de l’observateur. Cela signifie que l’idéal classique d’une description objective de la nature n’est plus valide. Le dualisme cartésien du sujet et du monde, de l’observateur et de ce qui est observé, ne peut plus être utilisé lorsqu’on traite de la matière atomique. En physique atomique, nous ne pouvons jamais parler de la nature sans, simultanément, parler de nous-mêmes.

La nouvelle théorie atomique résolut immédiatement plusieurs problèmes relatifs aux structures des atomes qui ne peuvent être expliqués par le modèle planétaire de Rutherford. Tout d’abord, les représentations de Rutherford ont montré que les atomes qui composent la matière solide sont formés presque entièrement d’espace vide, du moins en ce qui concerne la répartition de la masse. Mais si tous les objets autour de nous, et nous-mêmes, sommes composés principalement d’espace vide, pourquoi ne pouvons-nous jouer les passe-murailles ? En d’autres termes, qu’est-ce qui donne à la matière son aspect solide ?

Un second problème était l’extraordinaire solidité mécanique des atomes. Dans l’air, par exemple, les atomes entrent en collision des millions de fois par seconde et cependant retournent à leur forme originelle après chaque collision. Aucun système planétaire régi par les lois de la mécanique classique ne subirait sans dommage ces collisions. Mais un atome d’oxygène maintient toujours sa configuration électronique caractéristique, quel que soit le nombre de fois où il entre en collision avec les autres atomes. Cette configuration est en outre exactement la même pour tous les atomes d’une espèce donnée. Deux atomes de fer, et, par conséquent, deux morceaux de fer pur, sont complètement identiques, d’où qu’ils viennent ou quel qu’ait été leur traitement antérieur.

La théorie quantique a montré que toutes ces propriétés surprenantes des atomes proviennent de la nature ondulatoire de leurs électrons. Tout d’abord l’aspect solide de la matière est la conséquence d’un « effet quantique » typique lié à l’aspect duel ondulatoire/particulaire de la matière, une particularité du monde subatomique sans analogue macroscopique. Chaque fois qu’une particule est enfermée dans une petite région de l’espace, elle réagit à cet emprisonnement en tournoyant, et plus l’espace est exigu, plus rapide est le mouvement giratoire de la particule. Deux forces entrent en compétition dans l’atome. D’une part, les électrons sont liés aux noyaux par des forces électriques tendant à les maintenir le plus serrés possible. D’autre part, ils répondent à cet emprisonnement en tournoyant, et plus ils sont attirés vers le noyau, plus grande est leur vitesse ; en fait, l’emprisonnement des électrons dans un atome produit une vitesse considérable, d’environ 1 000 kilomètres-seconde. Ces vitesses élevées font apparaître l’atome comme une sphère rigide, de la même façon qu’une hélice en rotation rapide apparaît comme un disque. Il est très difficile de comprimer davantage les atomes, ainsi donnent-ils à la matière son aspect solide et familier.

Dans l’atome, les électrons gravitent donc sur une orbite telle qu’il existe un équilibre optimal entre l’attraction du noyau et leur résistance à être emprisonnés. Les orbites atomiques sont toutefois très différentes de celles des planètes du système solaire, la différence provenant de la nature ondulatoire des électrons. Un atome ne saurait être représenté comme un petit système planétaire. Plutôt que des particules circulant autour du noyau, nous devons nous imaginer des ondes probables disposées en différentes orbites. Chaque fois que nous prenons des mesures, nous trouvons les électrons quelque part sur ces orbites, mais nous ne pouvons pas dire qu’ils tournent autour du noyau au sens de la mécanique classique.

Dans les orbites, les ondes électroniques doivent être disposées de telle sorte que leurs extrémités se touchent, c’est-à- dire qu’elles forment des modèles connus sous le nom « d’ondes continues ». Ces modèles apparaissent chaque fois que les ondes sont enfermées dans une région finie, comme les ondes d’une corde vibrante de guitare, ou dans l’air à l’intérieur d’une flûte. Il apparaît clairement à travers ces exemples que les ondes continues ne peuvent revêtir qu’un nombre limité de formes bien définies. Dans le cas des ondes de l’électron à l’intérieur d’un atome, cela veut dire qu’elles ne peuvent exister que dans certaines orbites atomiques de diamètres déterminés. L’électron d’un atome d’hydrogène, par exemple, ne peut exister que sur certaines orbites, et nulle part ailleurs. Dans les conditions normales, il sera toujours sur sa plus petite orbite, appelée état initial de l’atome. De là il peut sauter sur des orbites plus élevées s’il reçoit une quantité suffisante d’énergie, l’atome est alors considéré comme dans un état d’« excitation », d’où il reviendra à son état initial après un certain temps, l’électron dégageant l’excès d’énergie sous la forme d’un quantum de radiation électromagnétique ou photon. Les états d’un atome, c’est-à-dire les formes et les distances mutuelles des orbites des électrons, sont exactement les mêmes pour tous les atomes ayant le même nombre d’électrons. C’est pourquoi deux atomes quelconques d’oxygène, par exemple, seront complètement identiques. Ils peuvent être dans différents états d’excitation, peut-être dus aux collisions avec d’autres atomes dans l’air, mais, après un moment, ils retourneront invariablement au même état initial. La nature ondulatoire des électrons explique donc l’identité des atomes et leur grande stabilité mécanique.

Un nouveau trait caractéristique des états atomiques est le fait qu’ils peuvent être complètement représentés par un ensemble de nombres intégraux, appelés « nombres quantiques », qui indique la localisation et la structure des orbites électroniques. Le premier chiffre quantique est celui de l’orbite et détermine l’énergie qu’un électron doit posséder pour être sur cette orbite ; deux chiffres supplémentaires déterminent la structure détaillée de l’onde de l’électron sur l’orbite et sont relatifs à la vitesse et à l’orientation de la rotation de l’électron. Le fait que ces détails sont exprimés par des nombres intégraux signifie que l’électron ne peut pas changer sa rotation de façon continue, mais seulement sauter d’une valeur à l’autre, selon son orbite. Là encore les valeurs les plus élevées représentent des états d’excitation de l’atome, l’état initial étant celui où tous les électrons sont sur les plus petites orbites et exercent la moindre rotation.

Tendances à exister, particules réagissant par le mouvement à l’emprisonnement, atomes passant soudain d’un état quantique à un autre, et une interrelation fondamentale de tous les phénomènes — voilà quelques-uns des traits caractéristiques du monde atomique. D’autre part, l’énergie fondamentale qui alimente tous les phénomènes atomiques est bien connue et peut être expérimentée dans le monde macroscopique. C’est la force de l’attraction électrique entre le noyau chargé positivement et l’électron chargé négativement. L’effet réciproque de cette force et des ondes électroniques donne naissance à l’immense variété des structures et des phénomènes de notre environnement. Il est responsable de toutes les réactions chimiques et de la formation des molécules, c’est-à-dire d’agrégats de plusieurs atomes liés les uns aux autres par une attraction mutuelle. L’interaction entre les électrons et les noyaux atomiques est donc à la base de tous les corps solides, liquides et gazeux, ainsi que de tous les organismes vivants et des processus biologiques qui leur sont associés.

Dans ce monde immensément riche en phénomènes atomiques, les noyaux jouent le rôle de centres extrêmement petits et stables constituant la source de l’énergie électrique et formant l’ossature de la grande variété des structures moléculaires. Pour comprendre ces structures et la plupart des phénomènes naturels autour de nous, il suffit de connaître la charge et la masse des noyaux. Toutefois, afin de comprendre la nature de la matière, de savoir de quoi elle est constituée en dernière analyse, on doit étudier les noyaux atomiques, qui contiennent pour ainsi dire toute sa masse. Dans les années 1930, après que la théorie des quanta eut éclairé l’univers atomique, telle était donc la tâche principale des physiciens : comprendre la structure des noyaux, leurs composantes et les forces qui les maintiennent si fermement ensemble.

Le premier pas important vers une compréhension de la structure nucléaire fut la découverte du neutron, la seconde composante du noyau, une particule qui a approximativement la même masse que le proton (la première composante du noyau) — environ deux mille fois la masse de l’électron — mais ne porte aucune charge électrique. Cette découverte ne prouvait pas seulement que les noyaux de tous les éléments chimiques étaient composés de protons et de neutrons, elle révélait également que l’énergie nucléaire, maintenant ces particules si fermement serrées à l’intérieur du noyau, était un phénomène complètement inédit. Elle ne pouvait être d’origine électromagnétique, les neutrons étant électriquement neutres. Les physiciens eurent vite fait de réaliser qu’ils se trouvaient en présence d’une nouvelle énergie naturelle qui ne se manifeste nulle part hors du noyau.

Un noyau atomique est environ cent mille fois plus petit que l’atome total et cependant il contient à peu près toute la masse de l’atome. Cela veut dire que la matière du noyau est extrêmement dense comparée aux formes de la matière que nous connaissons. En effet, si le corps humain pris dans sa totalité était comprimé à la densité nucléaire, il n’occuperait pas plus de volume qu’une tête d’épingle. La densité élevée n’est toutefois pas l’unique propriété exceptionnelle de la matière nucléaire. Étant de la même nature quantique que les électrons, les nucléons — comme sont souvent nommés les protons et les neutrons — réagissent à leur emprisonnement par des vitesses élevées, et leur réaction est d’autant plus violente qu’ils sont comprimés dans un plus petit volume. Ils tournoient dans le noyau à une vitesse d’environ 70 000 kilomètres-seconde ! La matière nucléaire est ainsi une forme de matière entièrement différente de tous les objets dont nous avons l’expérience dans notre environnement macroscopique. L’image la plus juste que nous puissions en donner est peut-être celle des gouttelettes d’un liquide extrêmement dense qui frissonne et bouillonne très violemment.

L’aspect essentiellement nouveau de la matière nucléaire, expliquant toutes ses propriétés exceptionnelles, est la puissante énergie nucléaire, et sa portée extrêmement courte est la caractéristique rendant cette énergie unique. Elle agit seulement lorsque les nucléons arrivent très près les uns des autres, c’est-à-dire quand leur distance est à peu près deux à trois fois leur diamètre. A une telle distance, l’énergie nucléaire exerce une forte attraction mais, lorsque la distance s’amenuise encore, l’énergie devient fortement répulsive, de telle sorte que les nucléons ne peuvent s’approcher plus près les uns des autres. En ce sens, l’énergie nucléaire maintient le noyau dans un équilibre extrêmement stable, quoique extrêmement dynamique.

L’image de la matière ressortant de l’étude des atomes et des noyaux montre que sa majeure partie est concentrée en petits points séparés par d’énormes distances. Dans le vaste intervalle entre les gouttes denses en effervescence se meuvent les électrons. Ceux-ci constituent seulement une infime fraction de l’ensemble de la masse, mais donnent à la matière son aspect solide et fournissent les liens nécessaires pour construire les structures moléculaires. Ils sont aussi impliqués dans les réactions chimiques et donc responsables des propriétés chimiques de la matière. Les réactions nucléaires, d’autre part, ne se produisent en général pas naturellement dans cette forme de matière car les énergies disponibles ne sont pas suffisamment élevées pour troubler l’équilibre nucléaire.

Pourtant cette forme de matière, avec sa multitude de structures et de textures et son architecture moléculaire complexe, ne peut exister que dans des conditions très spéciales, quand la température n’est pas trop élevée, afin que les molécules ne s’agitent pas trop. Lorsque l’énergie thermique augmente d’environ cent fois, comme c’est le cas dans la plupart des étoiles, toutes les structures atomiques et moléculaires sont détruites. La majeure partie de la matière existe, en fait, dans un état qui est très différent de celui-là. Au centre des étoiles existent de grosses accumulations de matière nucléaire, et les processus nucléaires qui n’ont cours que très rarement sur terre prédominent là-bas. Ils sont essentiels à la grande variété des phénomènes stellaires observés en astronomie, naissant pour la plupart d’une combinaison d’effets nucléaires et gravitationnels. Pour notre planète, les processus nucléaires au centre du Soleil sont d’une importance particulière parce qu’ils fournissent l’énergie qui soutient notre environnement terrestre. Ce fut l’un des grands triomphes de la physique moderne de découvrir que le flux d’énergie provenant du Soleil, notre lien vital avec le cosmos, est le résultat de réactions nucléaires, de phénomènes survenant dans le monde de l’infiniment petit.

Dans l’histoire de l’exploration humaine du monde infra-microscopique, un seuil fut atteint au début des années 1930 lorsque les chercheurs pensèrent qu’ils avaient finalement découvert la « brique fondamentale » de la matière. On savait que toute la matière se composait d’atomes et que ces derniers étaient constitués de protons, neutrons et électrons. Ces « particules élémentaires » étaient considérées comme les ultimes unités de matière indestructible : atomes au sens démocritéen. Bien que la théorie des quanta implique, comme on l’a vu, que nous puissions décomposer le monde en unités indépendantes et infiniment petites, cela n’était en ce temps-là généralement pas perçu. Les conceptions classiques étaient encore si prédominantes que la plupart des physiciens essayaient de comprendre la matière en termes de « briques fondamentales », et ce courant de pensée est, en fait, encore répandu aujourd’hui.

Deux développements ultérieurs de la physique moderne ont montré qu’on devait abandonner la notion de particules élémentaires comme unités primordiales de matière. L’un de ces développements fut expérimental, l’autre théorique, tous deux commencèrent dans les années 30. Du côté expérimental, des nouvelles particules furent découvertes tandis que les physiciens amélioraient leurs techniques d’expérimentation et développaient de nouveaux moyens ingénieux de détecter les particules. Ainsi le nombre des particules connues passa de trois à six en 1935, puis à dix-huit vers 1955, et aujourd’hui nous connaissons plus de deux cents particules élémentaires. (…) Au fur et à mesure que l’on découvrait davantage de particules au cours des années, il devenait clair qu’on ne pouvait plus les qualifier d’« élémentaires » et, aujourd’hui, l’opinion qu’aucune d’elles ne mérite ce nom est largement répandue chez les physiciens.

Cette opinion est renforcée par les développements théoriques parallèles à la découverte d’un nombre toujours croissant de particules. Peu après la formulation de la théorie des quanta, il devint clair qu’une théorie complète des phénomènes nucléaires ne devait pas être uniquement une théorie des quanta, mais également inclure la théorie de la relativité. Cela parce que les particules limitées aux dimensions des noyaux se déplacent souvent si vite que leur vitesse approche celle de la lumière. Ce fait est essentiel pour la description de leur comportement : toute description de phénomènes naturels engageant des vitesses proches de celle de la lumière doit tenir compte de la théorie de la relativité. Elle doit être, comme on dit, une description relativiste. Ce dont nous avons besoin, par conséquent, en vue d’une totale compréhension du monde nucléaire, est une théorie incluant à la fois la théorie quantique et la théorie de la relativité. Une telle théorie n’a pas encore été découverte, et donc nous ne sommes pas encore capables de formuler une théorie complète du noyau. Bien que nous en sachions déjà beaucoup sur la structure nucléaire et sur l’interaction des particules nucléaires, nous ne comprenons pas encore la nature et la forme complexe de l’énergie nucléaire à un niveau fondamental. Il n’existe pas de théorie complète de l’univers des particules comparable à la théorie des quanta pour l’univers atomique. Nous avons plusieurs modèles « quantiques relativistes » qui décrivent très bien certains aspects du monde des particules, mais la fusion de la théorie des quanta et de celle de la relativité en une théorie complète de l’univers particulaire demeure le problème central et le grand défi de la physique fondamentale actuelle.

La théorie de la relativité a exercé une profonde influence sur notre représentation de la matière en nous forçant à modifier de façon radicale notre conception de la particule. Dans la physique classique, la masse d’un corps fut toujours associée à une substance matérielle indestructible. La théorie de la relativité a montré que la masse n’a rien à voir avec une substance quelconque, mais est une forme de l’énergie. L’énergie, cependant, est une quantité dynamique, une activité. Le fait que la masse d’une particule soit équivalente à une certaine quantité d’énergie signifie que la particule ne saurait plus dès lors être perçue comme un objet statique, mais doit être considérée comme un modèle dynamique, un processus mettant en jeu l’énergie qui se manifeste elle-même comme masse.

Cette nouvelle manière de considérer les particules fut introduite par Dirac lorsqu’il formula une équation relativiste décrivant le fonctionnement des électrons. La théorie de Dirac ne réussit pas seulement à très bien expliquer les détails subtils de la structure atomique, mais révéla également une symétrie fondamentale entre la matière et la non- matière. Elle annonça l’existence d’un anti-électron pourvu de la même masse que l’électron, mais avec une charge opposée. Cette particule chargée positivement, désormais appelée positron, fut découverte véritablement deux ans après que Dirac l’avait pressentie. La symétrie entre la matière et l’antimatière suppose que pour chaque particule donnée existe une antiparticule de masse égale et de charge opposée. Les paires de particules et d’antiparticules peuvent être créées si une énergie suffisante est disponible et convertible en énergie pure dans le processus inverse de destruction. Ce processus de création et de destruction de particules avait été pressenti par la théorie de Dirac avant d’être effectivement découvert dans la nature, et depuis lors il a été observé des millions de fois.

La création de particules matérielles à partir d’énergie pure est certainement l’effet le plus spectaculaire de la théorie de la relativité, et ne peut être comprise qu’en fonction de l’aperçu général sur les particules esquissé ci-dessus. Avant la physique relativiste de la particule, les éléments de la matière étaient toujours considérés soit comme des unités élémentaires indestructibles et inchangeables, soit comme des objets composites pouvant être fractionnés en leurs éléments constitutifs, et la question fondamentale était de savoir si l’on pouvait diviser la matière à l’infini, si l’on arriverait finalement à quelque minuscule unité indivisible. Après la découverte de Dirac, tout le problème de la division de la matière apparut sous un jour nouveau. Lorsque deux particules se heurtent avec une énergie élevée, elles éclatent généralement en morceaux, mais ces morceaux ne sont pas plus petits que la particule originelle. Ce sont encore des particules de même nature, produites par l’énergie cinétique engagée dans le processus de collision. Le problème de la division de la matière est ainsi résolu de façon imprévue. La seule manière de diviser davantage les particules atomiques est de provoquer des processus de collision mettant en jeu une énergie élevée. De cette façon on peut diviser indéfiniment la matière, mais on n’obtient jamais de plus petits morceaux car on ne fait que créer des particules à partir de l’énergie mise en jeu dans le processus. Les particules subatomiques sont donc à la fois destructibles et indestructibles.

Cet état de fait est condamné à rester paradoxal aussi longtemps que nous adoptons la conception statique d’objets composés consistant en « blocs fondamentaux ». Ce n’est que lorsqu’on adopte une conception relativiste que le paradoxe disparaît. Les particules sont alors vues comme des schèmes dynamiques ou processus, impliquant une certaine quantité d’énergie nous apparaissant sous forme de masse. Dans un processus de collision, l’énergie de deux particules se heurtant est répartie pour former un nouveau système, et s’il est doté d’une quantité suffisante d’énergie cinétique, ce nouveau système peut inclure des particules supplémentaires.

Les collisions des particules subatomiques de haute énergie sont la méthode principale dont usent les physiciens afin d’étudier les propriétés de ces particules, et par conséquent la physique de la particule est également nommée physique des hautes énergies. Les énergies cinétiques requises pour les expériences de collisions sont obtenues au moyen de gros accélérateurs de particules, énormes machines circulaires à la circonférence de plusieurs kilomètres, dans lesquels les protons sont accélérés à des vitesses proches de celle de la lumière et sont alors projetés sur d’autres protons ou desneutrons. Il est impressionnant que de telles machines soient nécessaires à l’étude du monde de l’infiniment petit. Elles sont les supermicroscopes de notre époque.

La plupart des particules créées lors de ces collisions ne durent qu’un temps extrêmement bref — beaucoup moins qu’un millionième de seconde —, après quoi elles se désintègrent à nouveau en protons, neutrons et électrons. En dépit de leur durée d’existence excessivement courte, ces particules peuvent être non seulement détectées et leurs propriétés mesurées, mais elles peuvent être effectivement amenées à laisser des traces photographiables ! Ces traces de particules sont produites dans des « chambres à bulles » d’une manière similaire à la façon dont un avion à réaction laisse une traînée dans le ciel. Les particules réelles sont d’un ordre de grandeur beaucoup plus petit que les bulles laissant des traces mais, d’après l’épaisseur et la courbure d’une trace, les physiciens peuvent identifier la particule qui l’a engendrée. (…) Les collisions de particules sont notre principale méthode pour étudier leurs propriétés et leurs interactions, et les belles lignes, spirales et courbes, qu’elles tracent dans les chambres à bulles sont par conséquent d’une importance souveraine pour la physique moderne.

 Les expérimentations de hautes énergies des décennies passées nous ont montré la nature dynamique et toujours changeante de l’univers particulaire. La matière est apparue dans ces expériences comme totalement instable. Toutes les particules peuvent se transformer en d’autres particules ; elles peuvent être produites à partir de l’énergie et retourner à l’état d’énergie. Dans cet univers, les notions classiques comme celles de « particules élémentaires », « substance matérielle » ou « objet isolé » ont perdu leur signification, l’univers entier apparaît comme un réseau dynamique de structures énergétiques interdépendantes. Jusqu’ici nous n’avons pas encore trouvé une théorie complète pour décrire ce monde des particules subatomiques, mais nous avons plusieurs modèles théoriques qui en décrivent certains aspects. Aucun de ces modèles n’est exempt de difficultés mathématiques, et ils se contredisent tous d’une certaine manière, mais tous reflètent l’unité de base et le caractère dynamique intrinsèque de la matière. Ils montrent que ses propriétés ne peuvent être comprises qu’en fonction de ses activités, de ses interactions avec l’environnement, et que la particule, par conséquent, ne peut être considérée comme une entité isolée, mais doit être comprise comme partie intégrante de l’ensemble.

La théorie de la relativité n ‘ a pas seulement influencé de façon décisive notre conception des particules, mais aussi notre représentation des énergies que leur rencontre met en jeu. Dans une description relativiste des interactions de particules, les forces entre les particules — c’est-à-dire leur attraction ou leur répulsion mutuelle — sont représentées comme l’échange d’autres particules. Cette notion est très difficile à visualiser. Elle est une conséquence du caractère quadridimensionnel (selon l’espace-temps) du monde subatomique, et ni notre intuition ni notre langage ne peuvent traiter cette représentation très exactement. Cependant elle est essentielle à la compréhension des phénomènes subatomiques. Elle relie les énergies d’éléments constitutifs de la matière aux propriétés d’autres composantes de la matière, et unifie ainsi les deux notions d’énergie et de matière, qui étaient apparues si fondamentalement différentes, depuis les atomistes grecs. On considère maintenant que l’énergie et la matière ont une origine commune dans les systèmes dynamiques que nous nommons particules.

Le fait que les particules entrent en interaction à travers des énergies se manifestant elles-mêmes comme l’échange de particules est une autre raison pour laquelle l’univers subato- mique ne peut être décomposé en ses parties constituantes. Du niveau macroscopique au niveau nucléaire, les énergies assemblant les corps sont relativement faibles et il est approximativement juste de dire que les objets matériels sont constitués de leurs composantes. Ainsi peut-on dire d’un grain de sel qu’il est constitué de molécules de sel, les molécules de sel de deux sortes d’atomes, les atomes composés de noyaux et d’électrons, et les noyaux de protons et de neutrons. Au niveau de la particule, toutefois, il n’est plus possible de voir les choses ainsi.

Ces dernières années, il y a eu un nombre croissant de preuves que les protons et les neutrons sont également des composés ; mais les énergies les assemblant sont si fortes ou — ce qui revient au même — les vitesses atteintes par les composantes sont si élevées, que l’image relativiste doit être appliquée ; ces énergies sont aussi des particules. Ainsi, la distinction entre les particules constituantes et celles mettant en jeu les forces de cohésion s’efface et la notion approximative d’objet composé de parties constituantes s’effondre.

Dans la physique moderne, l’univers est ainsi considéré comme un ensemble dynamique indissociable, incluant toujours l’observateur d’une manière essentielle. Dans cette expérience, les notions traditionnelles d’espace et de temps, d’objets isolés et de cause et d’effet perdent leur signification. Une telle expérience est très proche de celle des mystiques orientaux. La similitude devient apparente dans les théories des quanta et de la relativité, et devient même plus manifeste dans les modèles « quantiques-relativistes » de physique subatomique où ces deux théories se combinent pour produire le plus frappant parallèle avec la philosophie orientale.

Fritjof Capra. Le tao de la physique.